Structural gene for beta-nerve growth factor not defective in familial dysautonomia.
نویسندگان
چکیده
The developmental loss of neurons in sympathetic, sensory, and some parasympathetic ganglia in familial dysautonomia suggests an inherited defect in the action of beta-nerve growth factor (beta-NGF). The role of this growth factor in dysautonomia has been difficult to resolve as there is no known source of authentic human beta-NGF. The availability of a cloned DNA probe for the human beta-NGF gene has allowed identification of some copies of the gene (alleles) in six affected families. Alleles differ in the length of restriction endonuclease fragments that hybridize to DNA probes for the gene. In two families, affected children did not inherit the same two alleles at the beta-NGF locus. Since this disease is transmitted in an autosomal recessive manner, affected children must share the same alleles at the locus causing the disease. This analysis excludes the beta-NGF gene region as the cause of this neurologic disease but does not eliminate other genes involved in beta-NGF action, such as those coding for processing enzymes, receptors, or other subunits of the NGF complex.
منابع مشابه
Phosphatidylserine improves axonal transport by inhibition of HDAC and has potential in treatment of neurodegenerative diseases
Familial dysautonomia (FD) is a rare children neurodegenerative disease caused due to a point mutation in the IKBKAP gene that results in decreased IKK complex-associated protein (IKAP) protein production. The disease affects mostly the dorsal root ganglion (DRG) and the sympathetic ganglion. Recently, we found that the molecular mechanisms underlying neurodegeneration in FD patients are defect...
متن کاملPhosphatidylserine Ameliorates Neurodegenerative Symptoms and Enhances Axonal Transport in a Mouse Model of Familial Dysautonomia
Familial Dysautonomia (FD) is a neurodegenerative disease in which aberrant tissue-specific splicing of IKBKAP exon 20 leads to reduction of IKAP protein levels in neuronal tissues. Here we generated a conditional knockout (CKO) mouse in which exon 20 of IKBKAP is deleted in the nervous system. The CKO FD mice exhibit developmental delays, sensory abnormalities, and less organized dorsal root g...
متن کاملFamilial dysautonomia model reveals Ikbkap deletion causes apoptosis of Pax3+ progenitors and peripheral neurons.
Familial dysautonomia (FD) is a devastating developmental and progressive peripheral neuropathy caused by a mutation in the gene inhibitor of kappa B kinase complex-associated protein (IKBKAP). To identify the cellular and molecular mechanisms that cause FD, we generated mice in which Ikbkap expression is ablated in the peripheral nervous system and identify the steps in peripheral nervous syst...
متن کاملCo-expression of recombinant human nerve growth factor with trigger factor chaperone in E. coli
Nerve growth factor (NGF) is a neurotrophic factor that is functional in the survival, maintenance and differentiation of nervous system cells. This protein has three subunits, of which the beta subunit has the main activity. Its structure consists of a cysteine knot motif made up of beta strands linked by disulfide bonds. It can be used as a therapeutic agent in the treatment of many diseases....
متن کاملFamilial dysautonomia is caused by mutations of the IKAP gene.
The defective gene DYS, which is responsible for familial dysautonomia (FD) and has been mapped to a 0.5-cM region on chromosome 9q31, has eluded identification. We identified and characterized the RNAs encoded by this region of chromosome 9 in cell lines derived from individuals homozygous for the major FD haplotype, and we observed that the RNA encoding the IkappaB kinase complex-associated p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 81 13 شماره
صفحات -
تاریخ انتشار 1984